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a b s t r a c t

This paper develops a relatively simple model that is intended to rapidly evaluate design configuration
and operating conditions for tubular anode-supported solid-oxide fuel-cell (SOFC) stacks. Heat is removed
from the SOFC tubes by a combination of convection and radiation. Heat is convected to air that circulates
vailable online 13 April 2010

eywords:
ubular SOFC
ong cylinder bundle
hermal radiation

outside the SOFC tubes and radiated to a surrounding cylindrical wall. The tubes are assumed to be
arranged in hexagonal arrays in which the distance between tubes centers form equilateral triangles.
The paper presents new configuration-factor formulas that are needed to represent arrays of staggered
cylinders. The configuration factors are derived for long cylinders using the crossed-string method. These
configuration factors have general utility beyond the application to fuel-cell systems. The model is applied
to a particular cell and stack system and used to evaluate the effects of a range of design and operating
onfiguration factors conditions.

. Introduction

Fig. 1 illustrates a fuel-cell bundle comprised of three hexago-
al tube “rings.” The center cylinder is a structural support, which
ay have gases flowing through it. In practice, the stack is sur-

ounded by an outer cylindrical shell and thermal insulation. The
uel cells are typically an anode-supported architecture, with fuel
owing inside the tubes and air flowing outside [1,2]. Tubular stacks
re usually connected in series, with each cell producing nomi-
ally the same current and the stack voltage being the sum of the
ell voltages. In addition to electricity, the fuel cells produce heat,
hich must be transferred to the environment. The heat is carried

ut by convection to surrounding cathode air and by radiation to
he surrounding shell. Maintaining SOFC temperature and limiting
emperature differences between tubes are important considera-
ions in stack design and operating conditions.

Evaluation of the radiation heat transfer within the tube bundle
epends upon geometric configuration factors (the configuration
actor between two surfaces is defined as the fraction of radiation
eaving one surface that is intercepted by the other surface [3]). For
three-dimensional assembly as complex as the one illustrated,
he configuration factors must be evaluated computationally. How-
ver, if the tubes are sufficiently long, then a two-dimensional
pproximation is reasonable. In this case, the configuration fac-

∗ Corresponding author. Tel.: +1 303 273 3379; fax: +1 303 273 3602.
E-mail address: rjkee@mines.edu (R.J. Kee).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2010.04.010
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tors can be evaluated analytically. The model reported here uses
the crossed-string method to evaluate the needed configuration
factors [3,4].

Juul [5] reports a careful analysis of the differences between full
three-dimensional configuration factors for finite-length parallel
cylinders and configuration factors evaluated using the crossed-
string method. The results are presented in terms of the ratio of
the tube separation distance and the tube radii (i.e., s/r) and the
ratio of tube length and tube radius (i.e., L/r). For SOFC bundles
such as those considered here, s/r is on the order of unity and
L/r is on the order of ten or more. Under these circumstances, the
two-dimensional crossed-string approach introduces only a 5–10%
error, which is consistent with other approximations in the model.

With configuration factors between individual cylinders in
hand, a configuration-factor matrix can be evaluated to determine
the interactions among all the cylinders in the bundle. By solving
a radiosity balance for each cylinder, the net radiation transfer and
the cylinder temperatures can be determined. The radiation model
is augmented by a convection model that transfers heat between
tube surfaces and surrounding air flow. The present model assumes
spatially uniform air temperature and a uniform heat-transfer coef-
ficient. The air temperature is determined from an energy balance
that depends upon the air mass flow rate. The results show that

because the outer tubes serve as de-facto radiation shields, the
inner tubes (i.e., those closer to the center post in Fig. 1) generally
operate at higher temperature.

There are potentially numerous applications that depend upon
heated cylinders being arranged in staggered arrays. Thus, the new

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:rjkee@mines.edu
dx.doi.org/10.1016/j.jpowsour.2010.04.010
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Fig. 2. Hexagonal pattern and numbering of the cylinders.

Fig. 1. Photograph of a tubular SOFC stack consisting of three hexagonal rings.

onfiguration factors that are presented in the paper have general
tility.

Although the model presented here is zero-dimensional in the
onvective heat transfer, it fully captures the overall heat balance.
nce the simple model is used to estimate the impact of cath-
de flow rates, insulation conductance and component emissivities,
ore detailed models can be used to optimize a design. For exam-

le, actual stacks may use cross flow, axial flow or radial flow on the
athode side, or complex flows that are a combination of all three.
n these cases, the sensible heat rise in the gas may either enhance
r suppress the temperature gradients in the stack. For example,
f the cathode air flows radially outward through the tube bundle,
he relatively cold air in the center of the bundle will reduce the
emperature of the inner tube rows, leading to a reduced gradi-
nt across the tube bundle. In the limit of high cathode air flow, or
ow cathode air inlet temperatures, the radial temperature gradi-
nt can even be inverted, with the inner rows of tubes operating at
ower temperatures than the outer rows. Similarly, axial air flows
an compensate for axial gradients in tube power density.

. Configuration factors

Fig. 2 illustrates a general layout for which configuration factors
re needed. All the cylinders are positioned in a hexagonal pattern.
he centers of all cylinders form equilateral triangles with a pitch p.
ith the exception of the center cylinder, which may be different,

ll cylinders have radius rh. The center cylinder has radius rc. The
uter shell has radius ro. The numbering of the cylinders, which fol-
ows that developed by Cox [6,3], facilitates further analysis using
he configuration factors. Owing to symmetry, cylinders with the
ame number behave exactly alike. The example shown in Fig. 2
as six types of cylinders plus the outer shell. The letters are added
o assist distinguishing between cylinders in forming composite

onfiguration factors.

The following subsections report configuration factors as func-
ions of the pitch p, radius of the center cylinder rc, and radius of the
ylinders on the hexagonal pattern rh. Although the algebra can be
edious in some cases, the crossed-string method leads to explicit
Fig. 3. Geometric layout for the unobstructed configuration factor between parallel
cylinders of different radius.

algebraic formulas. Deriving the configuration factors begins with
geometric constructions and trigonometric equations to represent
the lengths of the strings. Then Mathematica is used here to sim-
plify symbolically the crossed-string lengths into explicit algebraic
expressions [7].

2.1. Unobstructed center to hexagonal parallel cylinders

Fig. 3 illustrates the layout for the unobstructed configuration
factor between parallel cylinders of different radius. For example,
this situation occurs between the center cylinder 1 and any of the
surrounding hexagonal cylinders 2 in Fig. 2. Although this configu-
ration factor is found in most heat-transfer textbooks, it is restated
here to incorporate a consistent nomenclature involving p, rh, and
rc. The configuration factor is:

FAB = rh

2rc
+ 1

2�rc

√
p2 − (rc + rh)2 − 1

2�rc

√
p2 − (rc − rh)2

+ rc − rh cos−1
(

rc − rh
)

− rc + rh cos−1
(

rc + rh
)

(1)

2�rc p 2�rc p

The only restriction on this configuration factor is that rc + rh ≤ p.
That is, the cylinders to not overlap.
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Fig. 4. Geometric layout for the unobstructed configuration factor between parallel
cylinders of equal radius.
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ig. 5. Geometric layout for the configuration factor between a center cylinder and
hexagonal cylinder, blocked by a co-linear hexagonal cylinder.

.2. Unobstructed hexagonal to hexagonal cylinders of equal
adius

Fig. 4 illustrates the layout for the unobstructed configuration
actor between parallel cylinders of equal radius. This configuration
actor is clearly a subset of Fig. 3 and Eq. (1). It is only restated
ere because it is a simpler expression that is used frequently. For
xample in Fig. 2, this configuration factor applies for 2b to 3b, 2b
o 4b, etc.

CD = 1
2

+ 1
2�rh

√
p2 − (2rh)2 − p

2�rh
− 1

�
cos−1

(
2rh

p

)
(2)

o assure that the cylinders to not overlap 2rh ≤ p.

.3. Center to hexagonal cylinder, blocked by a parallel hexagonal
ylinder

Fig. 5 illustrates the layout for the configuration factor from a
enter cylinder (rc) to a smaller hexagonal cylinder (rh) that is par-
ially blocked by another hexagonal cylinder (rh). The centers of
he cylinders are co-linear and are separated by the pitch p. For
xample, in Fig. 2 this situation occurs from 1 to 4b, 1 to 4f, etc. The
onfiguration factor is:

EF = 1
2�rc

[
p −
√

4p2 − (rc − rh)2 +
√

p2 − (rc − rh)2
]

+ rc − rh

2�rc

[
cos−1

(
rc − rh

2p

)
− cos−1

(
rc − rh

p

)]
(3)

he restrictions on this configuration factor are: rc > rh and rc +
h ≤ p.

.4. Center cylinder to hexagonal cylinder, blocked by two
o-linear hexagonal cylinders

Fig. 6 illustrates the layout for the configuration factor from a

arge center cylinder (rc) to a smaller hexagonal cylinder (rh) that
s blocked by two hexagonal cylinders (rh). The centers of the cylin-
ers are co-linear and are separated by the pitch p. For example, in
ig. 2 this situation occurs from 1 to 6b, 1 to 6c, etc. The configura-
Fig. 6. Geometric layout for the configuration factor between a large center cylin-
der and a smaller hexagonal cylinder, partially blocked by two smaller co-linear
hexagonal cylinders.

tion factor is:

FGH = 1
2�rc

[
p +
√

4p2 − (rc − rh)2 −
√

9p2 − (rc − rh)2
]

+ rc − rh

2�rc

[
cos−1

(
rc − rh

3p

)
− cos−1

(
rc − rh

2p

)]
(4)

The restrictions on this configuration factor are: rc > rh and rc +
rh ≤ p. Clearly if rc ≤ rh then no radiation from the center cylinder
can reach the far hexagonal cylinder.

2.5. Center cylinder to hexagonal cylinder, blocked by two
hexagonal off-axis cylinders

Fig. 7 illustrates the layout for the configuration factor from a
center cylinder (rc) to a hexagonal cylinder (rh) that is partially
blocked by two off-axis hexagonal cylinders (rh). The centers of all
cylinders are located on equilateral triangles having sides of length
p. For example, in Fig. 2 this situation occurs from 1 to 3a, 1 to 3b,
etc. The configuration factor is:

FIJ = 1
6�rc

[−�rc−3�rh] + 1
2�rc

[
−p

√
1−4r2

h

p2
+
√

3p2 − (rc+rh)2

]

+ 1
2�rc

[
−p

√
1 − (rc + rh)2

p2

]
+ 1

2�rc

[
2rh cos−1

(
2rh

p

)]

+ 1
2�rc

[
(rc + rh) cos−1

(
rc + rh

p

)]

+ 1
2�rc

[
(rc + rh) sin−1

(
rc + rh√

3p

)]
(5)

In addition to being restricted by 2rh ≤ p and rc + rh ≤ p, this for-
mula must also satisfy

rc

p
≥ cos

[
2�

3
− cos−1

(
2

rh

p

)]
− rh

p
. (6)

The last restriction prevents the situation that the off-axis do not
block the radiation between cylinder 1 and 2. In this case, the con-
figuration factor can be evaluated from Eq. (1), using the separation
distance as

√
3p instead of p.

2.6. Hexagonal cylinder to hexagonal cylinder, blocked by two
off-axis hexagonal cylinders

Fig. 8 illustrates the layout for the configuration factor from a
hexagonal cylinder (rh) to another hexagonal cylinder (rh) that is
partially blocked by two off-axis hexagonal cylinders (r ). The cen-

ters of all cylinders are at the apexes of equilateral triangles with
sides of length p. This situation is a subset of Fig. 7 and Eq. (5).
However, because the situation occurs frequently and the equation
is simpler, it is useful to restate the reduced case. For example in
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Fig. 7. Geometric layout for the configuration factor between a center cylinder and a hexagonal cylinder, blocked by two off-axis hexagonal cylinders.

exago

F

F

T

Fig. 8. Geometric layout for the configuration factor between two h

ig. 2, this configuration factor applies for 3a to 3b, 3a to 6b, etc.

KL = 2
3

+ 1
2�rh

[
−p

√
1 − 4r2

h

p2
+
√

3p2 − (2rh)2

]

− 1
2�rh

[
p

√
1 − (2rh)2

p2

]

+ 1
[

cos−1
(

2rh
)

+ cos−1
(

2rh
)

+ sin−1

(
2rh√
)]

(7)

� p p 3p

he restriction on this configuration factor is

1
4

≤ rh

p
≤ 1

2
(8)
nal cylinders, partially blocked by two off-axis hexagonal cylinders.

The lower bound assures that the cylinders do not overlap. The
upper bound assures that the off-axis cylinders block some radia-
tion. If the off-axis cylinders do not block radiation, then Eq. (2) is
appropriate, using the separation distance as

√
3p instead of p.

2.7. Hexagonal cylinder to hexagonal cylinder, blocked by an
off-axis center cylinder and an off-axis hexagonal cylinder
Fig. 9 illustrates the layout for the configuration factor from
a hexagonal cylinder (rh) to another hexagonal cylinder (rh) that
is partially blocked by a center (rc) and a hexagonal (rh) off-axis
cylinder. The centers of all cylinders are at the apexes of equi-
lateral triangles with sides of length p. For example in Fig. 2, this
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onfiguration factor applies for 2a to 2c, 2a to 2e, etc.

MN = 1
12�rh

[−�rc − 3�rh]

+ 1
4�rh

[
2p

√
1 − (rc − rh)2

p2
− p

√
1 − 4r2

h

p2

]

− 1
4�rh

[
p

√
1 − (rc + rh)2

p2

]
+ 1

2�rh

[
2rh cos−1

(
2rh

p

)]

+ 1
2�rh

[
(rc − rh) sin−1

(
rc − rh

p

)]
(9)

q. (9) is restricted by

1
2

≤ rc + rh

p
≤ 1 (10)

1
4

≤ rh

p
≤ 1

2
(11)

he lower bounds assure that the cylinders do not overlap. The
pper bounds assure that there is at least some obstruction by both
ff-axis cylinders.

.8. Hexagonal cylinder to hexagonal cylinder, blocked by two
taggered hexagonal off-axis cylinders

Fig. 10 illustrates the layout for the configuration factor from a
exagonal cylinder (rh) to another hexagonal cylinder (rh) that is
artially blocked by two staggered off-axis hexagonal cylinders (rh).
he centers of all cylinders are at the apexes of equilateral triangles
ith sides of length p. For example in Fig. 2, this configuration factor
pplies for 2a to 6b, 5a to 5c, etc.

OP = 1
4�rh

[
p

√
1 − 4r2

h

p2
− 2p

√
3 − 4r2

h

p2
+ p

√
7 − 4r2

h

p2

]

cylinders, partially blocked by off-axis center and hexagonal cylinders.

+ 1
2�rh

[
rh sin−1

(
2rh

p

)
− 2rh sin−1

(
2rh√

3p

)]

+ 1
2�rh

[
rh sin−1

(
2rh√

7p

)
− rh tan−1

(√
3

5

)]
(12)

Eq. (12) is restricted by

2rh

p
≤ 1 (13)

�

3
+ sin−1

(
2rh√

3p

)
− cos−1

(
2rh

p

)
> 0 (14)

The first restriction assures that the cylinders do not overlap. The
second restriction assures that there is at least some obstruction by
both off-axis cylinders.

2.9. Hexagonal cylinder to hexagonal cylinder, blocked by a
center and two staggered hexagonal off-axis cylinders

Fig. 11 illustrates the layout for the configuration factor from
a hexagonal cylinder (rh) to another hexagonal cylinder (rh) that
is partially blocked by an off-axis center cylinder (rc) and two off-
axis hexagonal cylinders (rh). The centers of all cylinders are at the
apexes of equilateral triangles with sides of length p. For example
in Fig. 2, this configuration factor applies for 2a to 4c, 2a to 4e, etc.

FQR = 1
24�rh

[
−�rc − 12rh tan−1

(√
3

5

)]

+ 1
4�rh

[
+p

√
1 − 4r2

h

p2
− p

√
3 − 4r2

h

p2
+ p

√
7 − 4r2

h

p2

]

+ 1
4�rh

[
−p

√
1 − (rc + rh)2

p2
− p

√
1 − (rc − rh)2

p2

]

+ 1
4�rh

[
−rc sin−1

(
rc − rh

p

)
+ rc cos−1

(
rc + rh

p

)]
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Fig. 10. Geometric layout for the configuration factor between two staggered hexagonal cylinders, partially obstructed by two staggered off-axis hexagonal cylinders.
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ig. 11. Geometric layout for the configuration factor between two hexagonal cylin

+ 1
2�rh

[
rh sin−1

(
2rh

p

)
− 2rh sin−1

(
2rh√

3p

)]

+ 1
2�rh

[
rh sin−1

(
2rh√

7p

)]
(15)

q. (15) is restricted by

2rh

p
≤ 1 (16)

rc + rh

p
≤ 1 (17)

�

3
+ sin−1

(
2rh√

3p

)
− cos−1

(
2rh

p

)
> 0 (18)

�

6
+ sin−1

(
rc + rh

p

)
− cos−1

(
rc + rh

p

)
> 0 (19)

he first two restrictions assure that the cylinders do not overlap.
he second two restrictions assure that there is at least some block-
ge by each of the off-axis cylinders. If the off-axis cylinders do not
lock then the configuration factor can be evaluated from Eq. (2),
ut with the separation distance being

√
7p, not p.

.10. Center cylinder to hexagonal cylinder, blocked by three
taggered off-axis hexagonal cylinders
Fig. 12 illustrates the layout for the configuration factor from
center cylinder (rc) to a hexagonal cylinder (rh) that is partially
locked by three staggered off-axis hexagonal cylinders (rh). The
enters of all cylinders are at the apexes of equilateral triangles
partially blocked by a center and two staggered hexagonal off-axis cylinders.

with sides of length p. For example in Fig. 2, this configuration factor
applies for 1 to 5c, 1 to 5d, etc.

FST = 1
24�rc

[
� (rc − 4rh) + 6p

(√
1 − 4r2

h

p2
−
√

3 − 4r2
h

p2

)]

+ 1
4�rc

[√
7p2 − (rc + rh)2 −

√
3p2 − (rc + rh)2

]
+ rh

4�rc

[
cos−1

(
2rh

p

)
+ 3 sin−1

(
2rh

p

)]

− rh

4�rc

[
2 sin−1

(
2rh√

3p

)]

− (rc + rh)
4�rc

[
sin−1

(
rc + rh√

3p

)
− sin−1

(
rc + rh√

7p

)]

− (rc + rh)
4�rc

[
tan−1

(√
3

5

)]
(20)

Eq. (20) is restricted by

2rh

p
≤ 1 (21)

rc + rh
p
≤ 1 (22)

�

3
+ sin−1

(
rc + rh√

3p

)
− cos−1

(
2rh

p

)
> 0 (23)
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�

3
+ sin−1

(
2rh

p

)
− cos−1

(
rc + rh√

3p

)
> 0 (24)

he first two restrictions assure that the cylinders do not over-
ap. The second two restrictions assure that there is at least some
lockage by each of the off-axis cylinders.

. Configuration-factor matrix

Solving the radiation balance requires evaluation of an entire
onfiguration-factor matrix. The configuration factor Fij represents
he fraction of radiation leaving surface i that impinges upon
urface j. Although there are 36 cylinders in this example, the sym-
etry denoted by the numbering in Fig. 2 shows that there are

nly 7 effective surfaces. That is, all similarly numbered surfaces
ehave exactly alike. Thus the configuration-factor matrix is a 7 × 7
atrix. A further assumption in the analysis that follows is that all

imilarly numbered surfaces have the same temperature. Because
he configuration factors derived here apply only to two dimen-
ional surfaces (i.e., long cylinders), the analysis does not permit
xial variation along the length of the cylinders.

The configuration factor from the center cylinder to one of the
ylinders numbered 2 (e.g., F1,2a) is evaluated using Eq. (1) as FAB.
ecause there are 6 tubes of type 2, the net configuration factor

rom 1 to 2 is F12 = 6FAB. It follows directly from configuration-
actor reciprocity that F21 = A1F12/A2, where A1 = 2�rc and A2 =
× (2�rh) are the total areas per unit length of cylinders. Following

n analogous approach

13 = 6FIJ, F14 = 6FEF, F15 = 12FST, F16 = 6FGH (25)

31 = A1F13

A3
, F41 = A1F14

A4
, F51 = A1F15

A6
, F61 = A1F16

A6
(2

he configuration factor from the surface of the center cylinder to
tself is zero. In this example, it may be seen that several cylinders
re completely obscured from other cylinders. Specifically,

11 = 0, F44 = 0, F66 = 0 (27)

he cylinders labeled 2 can partially see each other. For example,
ome radiation from cylinder 2a can reach cylinder 2b, 2c, 2e, and
f. Using well-known configuration-algebra rules for composite
urfaces
2F22 = A(2a−2f)F(2a−2f),(2a–2f)

= A2aF2a,(2a–2f) + A2bF2b,(2a–2f) + · · · + A2fF2f,(2a–2f) (28)

here A2 = A(2a–2f) is the total surface area of all cylinders labeled
. The configuration factor from each of the cylinders labeled 2 to
xagonal cylinder, partially blocked by three staggered off-axis hexagonal cylinders.

the four other cylinders 2 that it can see can be represented as, for
example,

F2a,(2a–2f) = F2a,2b + F2a,2f + F2a,2c + F2a,2e = 2FCD + 2FMN (29)

Because all the cylinders have the same surface area and each of the
cylinders 2 see neighboring cylinders 2 in geometrically the same
way, it follows that

F22 = 2FCD + 2FMN (30)

Following analogous analysis, it can be shown that

F33 = 2FKL, F55 = FAB + 2FKL + 2FOP (31)

The configuration factors from cylinders 2 to the other hexagonal
cylinders can be evaluated as

F23 = 2FCD, F24 = FCD + 2FKL + 2FQR (32)

F25 = 2FKL + 2FOP, F26 = 2FOP (33)

The configuration factors from cylinders 3 to the other hexagonal
cylinders can be evaluated as

F34 = 2FCD + 2FOP, F35 = 2FCD + 2FOP (34)

F36 = 2FKL (35)

The configuration factors from cylinders 4 to the other hexagonal
cylinders can be evaluated as

F45 = 2FCD + 2FKL, F46 = FCD + 2FOP (36)

The configuration factors from cylinders 5 to cylinders 6 can be
evaluated as

F56 = FCD (37)

All other configuration factors to complete the matrix can be eval-
uated from reciprocity

Fji = AiFij

Aj
(38)

and row-summation
N∑

j=1

Fij = 1 (39)

where N is the number of surfaces on the cavity. In the present

example N = 7. The areas needed for reciprocity are evaluated using
the total surface area for all the cylinders of a certain number. That
is, for example,

A5 = A(5a,5b,...,5l) = 12 × (2�rh). (40)
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. Thermal energy balance

The fuel-cell tubes produce heat, which must be transferred by
combination of radiation and convection to the surroundings. To

llustrate the primary features of the heat transfer, the convection
s modeled in terms of a heat-transfer coefficient h that is assumed
o be spatially uniform. Temperature of the air flowing outside the
ube is also assumed to be spatially uniform. This uniform stirred-
eactor model satisfies the overall heat balance and is sufficient to
how the overall trends in the convective and radiation heat trans-
er. The air temperature Ta is determined from an energy balance
hat depends upon the inlet air temperature Ta,in, the mass flow
ate ṁ, the tube surface temperatures Ti.

Assume an example in which the hexagonal cylinders are SOFC
ubes with a typical electrical power density of Qe = 0.30 W cm−2

nd a conversion efficiency of � = 45%. The thermal heat flux
hrough the tube surfaces Qt is determined from

= Qe

Qe + Qt
(41)

he specific surface area (i.e., area per unit length) of an individual
ube is Ah = 2�rh = 3.14 × 10−2 m2/m. Under these circumstances
he thermal flux (per unit length) is Qt = 115.2 W/m. For the exam-
le, assume that the outer shell (surface 7) is held at a fixed
emperature of T7 = 600 ◦C (873 K) and that the center cylinder
surface 1) is a perfect thermal insulator, specified as Qnet,1 = 0.

The thermal radiation leaving the tube surfaces is the difference
etween the heat dissipated by the fuel cell and the convection
rom the tube surface to the surrounding air. That is,

rad,i = niQt − hAi(Ti − Ta) (42)

here ni is the number of type-i tubes. Assuming grey diffuse sur-
aces, the thermal radiation entering a cavity from each surface can
e represented alternatively as

rad,i = Ai�i

�T4
i

− Ji
1 − �i

(43)

nd

rad,i =
N∑

j=1

AiFij(Ji − Jj) (44)

here Ai, Ji, and �i are the specific surface area, the radiosity, and
missivity surface of surface i.

Energy balances for each surface as functions of the tempera-
ures Ti and radiosities Ji may be written as

rad,1 = Qnet,1 − hA1(T1 − Ta) =
7∑

j=1

A1F1j(J1 − Jj) (45)

rad,2 = 6Qt − hA2(T2 − Ta) =
7∑

j=1

A2F2j(J2 − Jj) (46)

rad,3 = 6Qt − hA3(T3 − Ta) =
7∑

j=1

A3F3j(J3 − Jj) (47)

rad,4 = 6Qt − hA4(T4 − Ta) =
7∑

A4F4j(J4 − Jj) (48)
j=1

rad,5 = 12Qt − hA5(T5 − Ta) =
7∑

j=1

A5F5j(J5 − Jj) (49)
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Qrad,6 = 6Qt − hA6(T6 − Ta) =
7∑

j=1

A6F6j(J6 − Jj) (50)

Qrad,7 = A7�7
�T4

7 − J7
1 − �7

=
7∑

j=1

A7F7j(J7 − Jj) (51)

Qrad,1 = Qnet,1 − hA1 ∗ (T1 − Ta) = A1�1
�T4

1 − J1
1 − �1

(52)

Qrad,2 = 6Qt − hA2(T2 − Ta) = A2�2
�T4

2 − J2
1 − �2

(53)

Qrad,3 = 6Qt − hA3(T3 − Ta) = A3�3
�T4

3 − J3
1 − �3

(54)

Qrad,4 = 6Qt − hA4(T4 − Ta) = A4�4
�T4

4 − J4
1 − �4

(55)

Qrad,5 = 12Qt − hA5(T5 − Ta) = A5�5
�T4

5 − J5
1 − �5

(56)

Qrad,6 = 6Qt − hA6(T6 − Ta) = A6�6
�T4

6 − J6
1 − �6

(57)

ṁcp(Ta − Ta,in) =
7∑

i=1

hAi(Ti − Ta) (58)

Assuming that the air surrounding the tubes is perfectly mixed and
spatially uniform, Eq. (58) is an energy balance for the flowing air.
This significantly simplifying assumption means that inlet air mixes
instantly with air already within the volume surrounding the tubes,
and that the air temperature leaving the volume is the same as the
mixture temperature. The perfectly-stirred-reactor assumption is
usually justified at flow rates with high turbulent mixing. Although
the perfect-mixing assumption could be questioned, especially at
low air flow rates, the approximation is appropriate to evaluate the
relative effects of convection and radiation.

The air mass flow rate can be represented in terms of the oxygen
flow needed to support fuel oxidation. Assuming a current density
i (A m−2), the stoichiometric molar flow rate of air per unit length
is

Ṅair,stoich = 1
0.21

i

4F
(59)

where F is the Faraday constant. The stoichiometric air mass flow
rate (i.e., mass flow rate per unit tube length, kg s−1 m−1) needed
to support all the tubes in the stack is

ṁair,stoich = Ṅair,stoichWairAtubentubes, (60)

where Wair is the molecular weight of air, Atube = 2�rh is the spe-
cific area (area per unit length) of a single SOFC tube, and ntubes is
the number of tubes in the stack. In practice, fuel-cell stacks are
operated with significantly more than the stoichiometric air flow.
Thus, the net air flow is

ṁ = Sṁair,stoich, (61)

where S is the number of “stoichs” (i.e., the factor by which the
actual air flow exceeds the stoichiometric air flow). For a current
density of i = 0.4 A cm−2 and S = 4, with 36 tubes the net air mass

flow rate is ṁ = 6.47 × 10−3 kg s−1 m−1.

Eqs. (45)–(58) form a system of 14 nonlinear equations for the
radiosities J1 on each of 7 surfaces, the temperatures on Ti on sur-
faces 1 through 6 (the outer shell temperature T7 is specified), and
the air temperature Ta.



6696 R.J. Kee et al. / Journal of Power Sources 195 (2010) 6688–6698

Table 1
Nominal stack and operating parameters.

Parameters Value Units

Stack geometry
SOFC tube radius (rh) 5 mm
Center-post radius (rh) 7.5 mm
Outer shell radius (ro) 61.25 mm
Tube spacing pitch (p) 17.5 mm

Stack operating conditions
Cell power density (P) 0.3 W cm−2

Conversion efficiency (�) 0.45
Cell current density (i) 0.4 A cm−2

“Stoichs” of air flow (S) 4
Air flow rate (ṁ) 0.00647 kg s−1 m−1

Inlet air temperature (Tin,air) 500 ◦C
Outer shell temperature (T7) 600 ◦C
Heat production per cell (Qi) 115.2 W m−1

Center-post heat transfer (Q1) 0 W m−1

Radiation parameters
Center-post emissivity (�1) 0.8
Outer shell emissivity (�7) 0.8
SOFC tube emissivity (�2 − �6) 0.6

Convection parameters
Heat transfer coefficient 20 W m−2 K−1

Table 2
Individual configuration factors with p = 17.5 mm, rc = 7.5 mm, and rh = 5 mm.

Configuration factor Value

FAB 9.578 × 10−2

FCD 9.371 × 10−2

FEF 1.900 × 10−3

FGH 6.321 × 10−4

FIJ 4.396 × 10−2

FKL 4.966 × 10−2
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Table 3
Configuration factor matrix with p = 17.5 mm, rc = 7.5 mm, and rh = 5 mm.

1 2 3 4 5 6 7

1 0.0000 0.5747 0.2638 0.0114 0.0866 0.0038 0.0598
2 0.1437 0.3287 0.1875 0.1944 0.1166 0.0173 0.0121
3 0.0659 0.1874 0.0993 0.2047 0.2047 0.0993 0.1387
4 0.0028 0.1943 0.2047 0.000 0.2867 0.1110 0.2004
5 0.0108 0.0583 0.1023 0.1434 0.1606 0.0937 0.4309
6 0.0009 0.0173 0.0993 0.1110 0.1874 0.000 0.5841
7 0.0073 0.0059 0.0679 0.0982 0.4221 0.2861 0.1125

Fig. 13. The effect of heat transfer coefficient on the tube temperatures.
FMN 7.063 × 10
FOP 8.627 × 10−3

FQR 6.362 × 10−3

FST 7.216 × 10−3

. Computational implementation

The intent of the model is to provide a tool that can be used
o quickly evaluate potential design and operational tradeoffs. The

odel is easily programmed, such as in a spread sheet environ-
ent. Beyond evaluating explicit functions (e.g., the configuration

actor matrix), the computational implementation must be capable
f solving a system of nonlinear equations (i.e., Eqs. (45)–(58)).

. Example and parameter studies

Table 1 lists geometric parameters and operating conditions for
nominal system. The model is used to evaluate the influence of

ertain parameters.

.1. Configuration factor evaluation

Consider a specific bundle with p = 17.5 mm, rc = 7.5 mm, and
h = 5 mm. Table 2 lists the individual configuration factors. Table 3
ists a full configuration matrix Fij , evaluated for the example geo-

etric parameters.

.2. Effect of heat-transfer coefficient
Figs. 13 and 14 illustrate the effects of varying heat-transfer
oefficient on the tube temperatures and the convective heat trans-
er. In this study, the emissivity of the SOFC tubes (i.e., A2–A6) is
= 0.6, while the emissivity of the center post (A1) and outer shell

A7) is � = 0.8. The center post is assumed to be perfectly insulated
Fig. 14. The effect of heat transfer coefficient on stack temperatures and heat-
transfer characteristics.

and the outer shell is fixed at T7 = 600 ◦C. The net air mass flow rate
is ṁ = 6.47 × 10−3 kg s−1 m−1 (a factor of 4 times the stoichiomet-
rically required air) and the inlet-air temperature is Ta,in = 500 ◦C.
When h = 0, the heat transfer from the SOFC tubes to the outer shell
is via thermal radiation alone.

Even though the overall air flow is four times that required

to supply oxygen to the fuel cells, the Reynolds numbers and
convective heat transfer coefficients for the geometry and oper-
ating conditions of Table 1 are low; Reynolds numbers are under
100, and the heat-transfer coefficients are in the range 3 < h <
10 W m−2 K−1. In these ranges, the primary mode of heat transfer
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Fig. 15. The effect of emissivity on tube temperatures.

rom the tubes to the ultimate heat sink is via radiation to the out-
ide wall. Fig. 14 shows the ratio of the radiation heat transfer to the
otal heat removed from the tubes. For a heat-transfer coefficient
= 10 W m−2 K−1, 82% of the heat transfer is by radiation and 18%
y convection.

.3. Effect of SOFC emissivity

Fig. 15 shows the effect of emissivity on the surfaces of the
OFC tubes. In all cases, the emissivity of the center post and
uter shell is � = 0.8. The center post is assumed to be perfectly
nsulated and the outer shell is fixed at T7 = 600 ◦C. The net air

ass flow rate is ṁ = 6.47 × 10−3 kg s−1 m−1 and the inlet-air tem-
erature is Ta,in = 500 ◦C. The heat-transfer coefficient is fixed at
= 20 W m−2 K−1. The outer fuel-cell tubes behave as radiation

hields, impeding radiative transport to the outer shell. Lower emis-

ivity (i.e., high reflectivity) produces higher tube temperatures.

Fig. 16 further summarizes the effects of SOFC tube emissivity.
he maximum SOFC temperature (i.e., T2) is always much higher
han the outer-shell temperature (T7). As emissivity increases

ig. 16. The effect of SOFC tube emissivity on stack temperatures and heat-transfer
haracteristics.
Fig. 17. Scaled layouts of the nominal bundle layout and bundles for which the
nominal pitch (p = 17.5 mm) is scaled by 80% and 120%. SOFC tube and center-post
radii are the same in all cases.

from � = 0.2 to � = 0.99, the maximum temperature decreases
by approximately 30 ◦C. The temperature difference between the
hottest SOFC tubes (T2) and the coolest SOFC tubes (T6) increases
slightly as emissivity increases. Under the circumstances here
about 75% of the heat produced by the SOFC tubes is transferred
to the outer shell by radiation. In other words, approximately 25%
of the heat is carried out with the cathode air. Although a relatively
weak effect, higher emissivity causes a higher fraction of the total
heat produced by the SOFC tubes to be transferred to the outer shell
by radiation. Because high emissivity increases radiative transport,
convective transport is diminished. This effect causes the air tem-
perature to decrease from about 655 ◦C for � = 0.2 to approximately
630 ◦C for � = 0.99.

6.4. Effect of tube pitch

Fig. 17 illustrates (to scale) the nominal dimensions for a tube
layout as well as layouts for which the pitch p is 80% of the nomi-
nal (i.e., p = 14 mm) and 120% of the nominal (i.e., p = 21 mm). The
outer shells are also scaled by 80% and 120%. The SOFC tube and
center-post radii are the same in all cases. In the compact pack-
ing case the radiation from inner SOFC tubes to the outer shell is
significantly impeded compared to the expanded case.

Fig. 18 shows the effect of pitch on tube temperatures. All
parameters, except pitch and outer shell radius, are the same as
those listed in Table 1. The compact pitch (80% case) causes higher
temperatures as well as higher temperature differences between
tubes. The expanded pitch (120%) yields lower and more uni-

form tube temperatures. Assuming that temperature uniformity is
desirable, the expanded pitch may be beneficial for performance.
However, the more uniform tube temperatures came at the expense
of lower packing density.
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Fig. 18. Effect of pitch on tube temperatures.

. Summary and conclusions

This model can be used to explore numerous design and oper-
tional alternatives. The key outputs of the model are the average
ell temperatures and the cell temperature gradients as a function
f stack geometry, operating conditions, and the emissivity of sur-
aces. The model quickly yields information on the total radiation
eat transfer and the ratio of radiation to convection within the
tack. With this information, stack designers can quickly assess the
mpact of design alternatives. For example, raising the outer wall
emperature (e.g., through the use of better insulation) increases
he average cell temperatures while decreasing the temperature
ifferences between cells. Because a majority of the heat transfer
rom the cells is through radiation, reducing the emissivity of the
uter wall is a powerful lever to control the stack temperature.

Radiative heat transfer proves remarkably effective at removing
he heat from tube bundles of this size. At typical operating con-
itions, most tubes operate less than 100 ◦C hotter than the outer
all, and the maximum temperature difference across the bun-
le is under 30 ◦C. Less than 20% of the heat transferred from the
ubes under these conditions is by convection to the cathode air
i.e., around 80% is transferred by radiation).

For relatively small tube bundles as considered here, lower air
ows can be employed advantageously. This is particularly impor-
ant for portable applications, where higher air flows can lead to
igh parasitic power draw in the cathode air supply system. The

bility to reject heat directly from the cells by radiation to the out-
ide walls provides the stack designer with additional flexibility in
electing the cathode air flow rate.

In all cases the interior tube temperatures are greater than the
xed outer-shell temperature of 600 ◦C, with the inner fuel-cell ring

[
[
[

[
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(A2) achieving the highest temperature. The temperature difference
between the hottest and coolest SOFC tube is around 30 ◦C, with the
difference increasing slightly with increasing emissivity.

Although there are similarities, there are also significant differ-
ences in the thermal behavior of planar and tubular stacks. In both
cases, heat is transferred convectively to gas flow (primarily cath-
ode air) and by a combination of modes to the exterior housing
of the stack. In planar stacks, heat is transferred to the periphery
of the stack by conduction through the interconnect plates and
the membrane-electrode assemblies, which can cause significant
temperature differences within the stack. By contrast, as shown in
the present paper, for stacks consisting of a bundle of tubes, ther-
mal radiation plays a significant role in transferring heat from the
tubular cells to the periphery of the stack. Tubular stacks can be
designed to take advantage of radiation, yielding additional design
freedom to control the relative influences of convective and radi-
ation in heat rejection. In large planar stacks, the majority of the
heat produced in the stack must be removed by convection to the
cathode air, not by conduction through the solid materials of the
stack. This often forces designers to use higher cathode flows than
would otherwise be required to maintain cell temperature varia-
tions within acceptable limits. Because high cathode-air flow draws
significant parasitic power from the system, tubular stacks that can
beneficially use radiation to assist thermal management reduce the
parasitic losses associated with high cathode air flows.

The present model is simple relative to a full three-dimensional
computational simulation. However, it is also mostly analytic and
can be solved easily is a few seconds on a personal computer. Thus,
the model provides the capability to rapidly screen alternatives
prior to detailed design.
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